Link prediction via controlling the leading eigenvector

نویسندگان

چکیده

Link prediction is a fundamental challenge in network science. Among various methods, similarity-based algorithms are popular for their simplicity, interpretability, high efficiency and good performance. In this paper, we show that the most elementary local similarity index Common Neighbor (CN) can be linearly decomposed by eigenvectors of adjacency matrix target network, with each eigenvector’s contribution being proportional to square corresponding eigenvalue. As many real networks, there huge gap between largest eigenvalue second eigenvalue, CN thus dominated leading eigenvector much useful information contained other may overlooked. Accordingly, propose parameter-free algorithm ensures contributions secondary same. Extensive experiments on networks demonstrate performance proposed remarkably better than well-performed indices literature. A further adjust shows superiority over state-of-the-art tunable parameters its competitive accuracy lower computational complexity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction via Matrix Factorization

We propose to solve the link prediction problem in graphs using a supervised matrix factorization approach. The model learns latent features from the topological structure of a (possibly directed) graph, and is shown to make better predictions than popular unsupervised scores. We show how these latent features may be combined with optional explicit features for nodes or edges, which yields bett...

متن کامل

Link Prediction via Matrix Completion

Ratha Pech, Hao Dong1,2,∗, Liming Pan, Hong Cheng, Zhou Tao1,2,∗ 1 CompleX Lab, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China 2 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China and 3 Center for Robotics, University of Electronic Science and Technology of China, Ch...

متن کامل

Efficient coordinate-wise leading eigenvector computation

We develop and analyze efficient ”coordinatewise” methods for finding the leading eigenvector, where each step involves only a vector-vector product. We establish global convergence with overall runtime guarantees that are at least as good as Lanczos’s method and dominate it for slowly decaying spectrum. Our methods are based on combining a shift-and-invert approach with coordinate-wise algorit...

متن کامل

Link Prediction via Generalized Coupled Tensor Factorisation

This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of t...

متن کامل

Features Selection via Eigenvector Centrality

In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2021

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2021.126517